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Abstract
As the amount of textual information grows explosively in vari-
ous kinds of business systems, it becomes more and more desir-
able to analyze both structured data records and unstructured text
data simultaneously. While online analytical processing (OLAP)
techniques have been proven very useful for analyzing and mining
structured data, they face challenges in handling text data. On the
other hand, probabilistic topic models are among the most effective
approaches to latent topic analysis and mining on text data. In this
paper, we propose a new data model called topic cube to combine
OLAP with probabilistic topic modeling and enable OLAP on the
dimension of text data in a multidimensional text database. Topic
cube extends the traditional data cube to cope with a topic hierarchy
and store probabilistic content measures of text documents learned
through a probabilistic topic model. To materialize topic cubes ef-
ficiently, we propose a heuristic method to speed up the iterative
EM algorithm for estimating topic models by leveraging the mod-
els learned on component data cells to choose a good starting point
for iteration. Experiment results show that this heuristic method is
much faster than the baseline method of computing each topic cube
from scratch. We also discuss potential uses of topic cube and show
sample experimental results.

1 Introduction
Data warehouses are widely used in today’s business market
for organizing and analyzing large amounts of data. An im-
portant technology to exploit data warehouses is the Online
Analytical Processing (OLAP) technology [4, 10, 16], which
enables flexible interactive analysis of multidimensional data
in different granularities. It has been widely applied to many
different domains [15, 22, 31]. OLAP on data warehouses is
mainly supported through data cubes [11, 12].

As unstructured text data grows quickly, it is more
and more important to go beyond the traditional OLAP
on structured data to also tap into the huge amounts of
text data available to us for data analysis and knowledge
discovery. These text data often exist either in the character
fields of data records or in a separate place with links to
the data records through joinable common attributes. Thus
conceptually we have both structured data and unstructured
text data in a database. For convenience, we will refer to such
a database as a multidimensional text database, to distinguish
it from both the traditional relational databases and the text
databases which consist primarily of text documents.

As argued convincingly in [13], simultaneous analysis
of both structured data and unstructured text data is needed
in order to fully take advantage of all the knowledge in all

the data, and will mutually enhance each other in terms of
knowledge discovery, thus bringing more values to busi-
ness. Unfortunately, traditional data cubes, though capable
of dealing with structured data, would face challenges for
analyzing unstructured text data.

As a specific example, consider ASRS [2], which is
the world’s largest repository of safety information provided
by aviation’s frontline personnel. The database has both
structured data (e.g., time, airport, and light condition) and
text data such as narratives about an anomalous event written
by a pilot or flight attendant as illustrated in Table 1. A text
narrative usually contains hundreds of words.

Table 1: An example of text database in ASRS
ACN Time Airport · · · Light Narrative

101285 199901 MSP · · · Daylight Document 1
101286 199901 CKB · · · Night Document 2
101291 199902 LAX · · · Dawn Document 3

This repository contains valuable information about avi-
ation safety and is a main resource for analyzing causes of
recurring anomalous aviation events. Since causal factors do
not explicitly exist in the structured data part of the reposi-
tory, but are buried in many narrative text fields, it is crucial
to support an analyst to mine such data flexibly with both
OLAP and text content analysis in an integrative manner.
Unfortunately, the current data cube and OLAP techniques
can only provide limited support for such integrative anal-
ysis. In particular, although they can easily support drill-
down and roll-up on structured attributes dimensions such
as “time” and “location”, they cannot support an analyst to
drill-down and roll-up on the text dimension according to
some meaningful topic hierarchy defined for the analysis
task (i.e. anomalous event analysis), such as the one illus-
trated in Figure 1.

In the tree shown in Figure 1, the root represents the
aggregation of all the topics (each representing an anoma-
lous event). The second level contains some general anomaly
types defined in [1], such as “Anomaly Altitude Deviation”
and “Anomaly Maintenance Problem.” A child topic node
represents a specialized event type of the event type of its
parent node. For example, “Undershoot” and “Overshoot”
are two special anomaly events of “Anomaly Altitude Devi-



ation.”
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Figure 1: Hierarchical Topic Tree for Anomaly Event

Being able to drill-down and roll-up along such a hi-
erarchy would be extremely useful for causal factor analy-
sis of anomalous events. Unfortunately, with today’s OLAP
techniques, the analyst cannot easily do this. Imagine that
an analyst is interested in analyzing altitude deviation prob-
lems of flights in Los Angeles in 1999. With the tradi-
tional data cube, the analyst can only pose a query such
as (Time=“1999”,Location=“LA”) and obtain a large set of
text narratives, which would have to be further analyzed with
separate text mining tools.

Even if the data warehouse can support keyword queries
on the text field, it still would not help the analyst that much.
Specifically, the analyst can now pose a more constrained
query (Time=“1999”,Location=“LA”, Keyword=“altitude
deviation”), which would give the analyst a smaller set
of more relevant text narratives (i.e., those matching the
keywords “altitude deviation”) to work with. However, the
analyst would still need to use a separate text mining tool
to further analyze the text information to understand causes
of this anomaly. Moreover, exact keyword matching would
also likely miss many relevant text narratives that are about
deviation problems but do not contain or match the keywords
“altitude” and “deviation” exactly; for example, a more
specific word such as “overshooting” may have been used
in a narrative about an altitude deviation problem.

A more powerful OLAP system should ideally integrate
text mining more tightly with the traditional cube and OLAP,
and allow the analyst to drill-down and roll-up on the text di-
mension along a specified topic hierarchy in exactly the same
way as he/she could on the location dimension. For exam-
ple, it would be very helpful if the analyst can use a similar
query (Time=“1999”,Location=“LA”, Topic=“altitude de-
viation”) to obtain all the relevant narratives to this topic
(including those that do not necessarily match exactly the
words “altitude” and “deviation”), and then drill down into
the lower-level categories such as “overshooting” and “un-
dershooting” according to the hierarchy (and roll-up again)
to change the view of the content of the text narrative data.
Note that although the query has a similar form to that with
the keyword query mentioned above, its intended semantics
is different: “altitude deviation” is a topic taken from the hi-
erarchy specified by the analyst, which is meant to match all
the narratives covering this topic including those that may
not match the keywords “altitude” and “deviation.”

Furthermore, the analyst would also need to digest the

content of all the narratives in the cube cell corresponding
to each topic category and compare the content across dif-
ferent cells that correspond to interesting context variations.
For example, at the level of “altitude deviation”, it would be
desirable to provide a summary of the content of all the nar-
ratives matching this topic, and when we drill-down to “over-
shooting”, it would also be desirable to allow the analyst to
easily obtain a summary of the narratives corresponding to
the specific subcategory of “overshooting deviation.” With
such summaries, the analyst would be able to compare the
content of narratives about the encountering problem across
different locations in 1999. Such a summary can be regarded
as a content measure of the text in a cell.

This example illustrates that in order to integrate text
analysis seamlessly into OLAP, we need to support the
following functions:
Topic dimension hierarchy: We need to map text docu-
ments semantically to an arbitrary topic hierarchy specified
by an analyst so that the analyst can drill-down and roll-up
on the text dimension (i.e., adding text dimension to OLAP).
Note that we do not always have training data (i.e., docu-
ments with known topic labels) for learning. Thus we must
be able to perform this mapping without training data.
Text content measure: We need to summarize the content
of text documents in a data cell (i.e., computing content
measure on text). Since different applications may prefer
different forms of summaries, we need to be able to represent
the content in a general way that can accommodate many
different ways to further customize a summary according to
the application needs.
Efficient materialization: We need to materialize cubes
with text content measures efficiently.

Although there has been some previous work on text
database analysis [9, 20] and integrating text analysis with
OLAP [19, 27], to the best of our knowledge, no previous
work has proposed a specific solution to extend OLAP to
support all these functions mentioned above. The closest
previous work is the IBM work [13], where the authors pro-
posed some high-level ideas for leveraging existing text min-
ing algorithms to integrate text mining with OLAP. However,
in their work, the cubes are still traditional data cubes, thus
the integration is loose and text mining is in nature external
to OLAP. Moreover, the issue of materializing cubes to effi-
ciently handle text dimension has not be addressed. We will
review the related work in more detail in Section 2.

In this paper, we propose a new cube data model called
topic cube to support the two key components of OLAP on
text dimension (i.e., topic dimension hierarchy and text con-
tent measure) with a unified probabilistic framework. Our
basic idea is to leverage probabilistic topic modeling [18, 8],
which is a principled method for text mining, and combine
it with OLAP. Indeed, PLSA and similar topic models have
recently been very successfully applied to a large range of
text mining problems including hierarchical topic modeling
[17, 7], author-topic analysis [29], spatiotemporal text min-
ing [24], sentiment analysis [23], and multi-stream bursty



pattern finding [32]. They are among the most effective text
mining techniques. We propose Topic Cube to combine them
with OLAP to enable effective mining of both structured data
and unstructured text within a unified framework.

Specifically, we will extend the traditional cube to in-
corporate the probabilistic latent semantic analysis (PLSA)
model [18] so that a data cube would carry parameters of a
probabilistic model that can indicate the text content of the
cell. Our basic assumption is that we can use a probability
distribution over words to model a topic in text. For example,
a distribution may assign high probabilities to words such
as “encounter”, “turbulence”, “height”, “air”, and it would
intuitively capture the theme “encountering turbulence” in
the aviation report domain. We assume all the documents
in a cell to be word samples drawn from a mixture of many
such topic distributions, and can thus estimate these hidden
topic models by fitting the mixture model to the documents.
These topic distributions can thus serve as content measures
of text documents. In order to respect the topic hierarchy
specified by the analyst and enable drill-down and roll-up
on the text dimension, we further structure such distribution-
based content measures based on the topic hierarchy speci-
fied by an analyst by using the concept hierarchy to impose
a prior (preference) on the word distributions characterizing
each topic, so that each word distribution would correspond
to precisely one topic in the hierarchy. This way, we will
learn word distributions characterizing each topic in the hi-
erarchy. Once we have a distributional representation of each
topic, we can easily map any set of documents to the topic
hierarchy.

Note that topic cube supports the first two functions in
a quite general way. First, when mapping documents into a
topic hierarchy, the model could work with just some key-
word description of each topic but no training data. Our ex-
periment results show that this is feasible. If we do have
training data available, the model can also easily use it to en-
rich our prior; indeed, if we have many training data and im-
pose an infinitely strong prior, we essentially perform super-
vised text categorization with a generative model. Second, a
multinomial word distribution serves well as a content mea-
sure. Such a model (often called unigram language model)
has been shown to outperform the traditional vector space
models in information retrieval [28, 34], and can be further
exploited to generate more informative summaries if needed.
For example, in [26], such a unigram language model has
been successfully used to generate a sentence-based impact
summary of scientific literature. In general, we may further
use these word distributions to generate informative phrases
[25] or comparative summaries for comparing content across
different contexts [23]. Thus topic cube has potentially many
interesting applications.

Computing and materializing such a topic cube in a
brute force way is time-consuming. So to better support the
third function, we propose a heuristic algorithm to leverage
estimated models for “component cells” to speed up the
estimation of the model for a combined cell. Estimation

of parameters is done with an iterative EM algorithm. Its
efficiency highly depends on where to start in the parameter
space. Our idea for speeding it up is as follows: We
would start with the smallest cells to be materialized, and
fit the PLSA to them first. We then work on larger cells by
leveraging the estimated parameters for the small cells as a
more efficient starting point. Experiment results show that
the proposed strategy can indeed speed up the estimation
algorithm significantly.

The main contributions of this paper are: (1) We intro-
duce the new concept of topic cube to combine OLAP and
probabilistic topic models to generalize OLAP techniques
to handle the text dimension. (2) We propose a heuristic
method that can improve the efficiency of topic cube ma-
terialization. (3) We present experiment results to show the
accuracy and efficiency of topic cube construction.

2 Related Work
To the best of our knowledge, no previous work has unified
topic modeling with OLAP. However, some previous studies
have attempted to analyze text data in a relational database
and support OLAP for text analysis. These studies can be
grouped into three categories, depending on how they treat
the text data.
Text as fact: In this kind of approaches, the text data is
regarded as a fact of the data records. When a user queries
the database, the fact of the text data, e.g. term frequency,
will be returned. BlogScope [5], which is an analysis and
visualization tool for blogosphere, belongs to this category.
One feature of BlogScope is to depict the trend of a keyword.
This is done by counting relevant blog posts in each time slot
according to the input keyword and then drawing a curve
of counts along the time axis. However, such an approach
cannot support OLAP operations such as drill-down and roll-
up on the text dimension, which the proposed topic cube
would support.
Text as character field: A major representative work in this
group is [33], where the text data is treated as a character
field. Given a keyword query, the records which have the
most relevant text in the field will be returned as results. For
example, the following query (Location=“Columbus”, key-
word=“LCD”) will fetch those records with location equal
to “Columbus” and text field containing “LCD”. This essen-
tially extends the query capability of a relational database
to support search over a text field. However, this approach
cannot support OLAP on the text dimension either.
Text as categorical data: The two most similar works to
ours are BIW [13] and Polyanalyst [3]. Both of them use
classification methods to classify documents into categories
and attach documents with class labels. Such category labels
would allow a user to drill-down or roll-up along the category
dimension, thus achieving OLAP on text. However, in [13],
only some high-level function descriptions are given with no
algorithms given to efficiently support such OLAP opera-
tions on text dimension. Moreover in both works, the no-



tion of cube is still the traditional data cube. Our topic cube
differs from these two systems in that we integrate text min-
ing (specifically topic modeling) more tightly with OLAP
by extending the traditional data cube to cover topic dimen-
sion and support text content measures, which leads to a new
cube model (i.e., topic cube). The topic model provides a
principled way to map arbitrary text documents into topics
specified in any topic hierarchy determined by an applica-
tion without needing any training data. Previous work would
mostly either need documents with known labels (for learn-
ing) which do not always exist, or cluster text documents
in an unsupervised way, which does not necessarily produce
meaningful clusters to an analyst, reducing the usefulness
for performing OLAP on multidimensional text databases.
We also propose heuristic methods for materializing the new
topic cubes efficiently.

Topic models have been extensively studied in recent
years [6, 7, 8, 17, 18, 23, 24, 25, 29, 32], all showing that
they are very useful for analyzing latent topics in text and
discovering topical patterns. However, all the work in this
line only deals with pure text data. Our work can be regarded
as a novel application of such models to support OLAP on
multidimensional text databases.

3 Topic Cube as an Extension of Data Cube
The basic idea of topic cube is to extend the standard data
cube by adding a topic hierarchy and probabilistic content
measures of text so that we can perform OLAP on the
text dimension in the same way as we perform OLAP on
structured data. In order to understand this idea, it is
necessary to understand some basic concepts about data cube
and OLAP. So before we introduce topic cube in detail, we
give a brief introduction to these concepts.

3.1 Standard Data Cube and OLAP A data cube is a
multidimensional data model. It has three components as
input: a base table, dimensional hierarchies, and measures.
A base table is a relational table in a database. A dimensional
hierarchy gives a tree structure of values in a column field
of the base table so that we can define aggregation in a
meaningful way. A measure is a fact of the data.

Roll-up and drill-down are two typical operations in
OLAP. Roll-up would “climb up” on a dimensional hierarchy
to merge cells, while drill-down does the opposite and split
cells. Other OLAP operations include slice, dice, pivot, etc.

Two kinds of OLAP queries are supported in a data
cube: point query and subcube query. A point query seeks
a cell by specifying the values of some dimensions, while a
range query would return a set of cells satisfying the query.

3.2 Overview of Topic Cube A topic cube is constructed
based on a multidimensional text database (MTD), which
we define as a multi-dimensional database with text fields.
An example of such a database is shown in Table 1. We
may distinguish a text dimension (denoted by TD) from a

standard (i.e., non-text) dimension (denoted by SD) in a
multidimensional text database.

Another component used to construct a topic cube is a
hierarchical topic tree. A hierarchical topic tree defines a
set of hierarchically organized topics that users are mostly
interested in, which are presumably also what we want to
mine from the text. A sample hierarchical topic tree is shown
in Fig. 1. In a hierarchical topic tree, each node represents
a topic, and its child nodes represent the sub-topics under
this super topic. Formally, the topics are placed in several
levels L1, L2, . . . , Lm. Each level contains ki topics, i.e.
Li = (T1, . . . , Tki

).
Given a multidimensional text database and a hierarchi-

cal topic tree, the main idea of a topic cube is to use the
hierarchical topic tree as the hierarchy for the text dimension
so that a user can drill-down and roll-up along this hierarchy
to explore the content of the text documents in the database.
In order to achieve this, we would need to (1) map all the
text documents to topics specified in the tree and (2) com-
pute a measure of the content of the text documents falling
into each cell.

As will be explained in detail later, we can solve both
problems simultaneously with a probabilistic topic model
called probabilistic latent semantics analysis (PLSA) [18].
Specifically, given any set of text documents, we can fit the
PLSA model to these documents to obtain a set of latent
topics in text, each represented by a word distribution (also
called a unigram language model). These word distributions
can serve as the basis of the “content measure” of text.

Since a basic assumption we make is that the analyst
would be most interested in viewing the text data from
the perspective of the specified hierarchical topic tree, we
would also like these word distributions corresponding well
to the topics defined in the tree. Note that an analyst will
be potentially interested in multiple levels of granularity of
topics, thus we also would like our content measure to have
“multiple resolutions”, corresponding to the multiple levels
of topics in the tree. Formally, for each level Li, if the tree
has defined ki topics, we would like the PLSA to compute
precisely ki word distributions, each characterizing one of
these ki topics. We will denote these word distributions as
θj , for j = 1, ..., ki, and p(w|θj) is the probability of word
w according to distribution θj . Intuitively, the distribution
θj reflects the content of the text documents when “viewed”
from the perspective of the j-th topic at level Li.

We achieve this goal of aligning a topic to a word
distribution in PLSA by using keyword descriptions of the
topics in the tree to define a prior on the word distribution
parameters in PLSA so that all these parameters will be
biased toward capturing the topics in the tree. We estimate
PLSA for each level of topics separately so as to obtain a
multi-resolution view of the content.

This established correspondence between a topic and a
word distribution in PLSA has another immediate benefit,
which is to help us map the text documents into topics in the
tree because the word distribution for each topic can serve



as a model for the documents that cover the topic. Actually,
after estimating parameters in PLSA we also obtain another
set of parameters that indicate to what extent each document
covers each topic. It is denoted as p(θj |d), which means the
probability that document d covers topic θj . Thus we can
easily predict which topic is the dominant topic in the set of
documents by aggregating the coverage of a topic over all
the documents in the set. That is, with p(θj |d), we can also
compute the topic distribution in a cell of documents C as
p(θj |C) = 1

|C|
∑

d∈C p(θj |d) (we assume p(d) are equal for
all d ∈ C). While θj is the primary content measure which
we will store in each cell, we will also store p(θj |d) as an
auxiliary measure to support other ways of aggregating and
summarizing text content.

Thus essentially, our idea is to define a topic cube as an
extension of a standard data cube by adding (1) a hierarchical
topic tree as a topic dimension for the text field and (2) a set
of probabilistic distributions as the content measure of text
documents in the hierarchical topic dimension. We now give
a systematic definition of the topic cube.

3.3 Definition of Topic Cube

DEFINITION 3.1. A topic cube is constructed based on a
text database D and a hierarchical topic tree H . It not only
has dimensions directly defined in the standard dimensions
SD in the database D, but it also has a topic dimension
which is corresponding to the hierarchical topic tree. Drill-
down and roll-up along this topic dimension will allow users
to view the data from different granularities of topics. The
primary measure stored in a cell of a topic cube consists of
a word distribution characterizing the content of text docu-
ments constrained by values on both the topic dimension and
the standard dimensions (contexts).

The star schema of a topic cube for the ASRS example is
given in Fig. 2. The dimension table for the topic dimension
is built based on the hierarchical topic tree. Two kinds
of measures are stored in a topic cube cell, namely word
distribution of a topic p(wi|topic) and topic coverage by
documents p(topic|dj).

Time_key

Location_key

Environment_key

Topic_key

{wi: p(wi|topic)}

{dj: p(topic|dj)}

Time_key

Day

Month

Year

Location_key

City

State

Country

Time

Location

Environment_key

Light

Environment

Measures

Topic_key

Lower level topic

Higher level topic

Topic

Fact table

Figure 2: Star Schema of a Topic cube
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Figure 3: An example of a Topic Cube

Fig. 3 shows an example of a topic cube which is
built based on ASRS data. The “Time” and “Location”
dimensions are defined in the standard dimensions in the
ASRS text database, and the topic dimension is added from
the hierarchical tree shown in Fig. 1. For example, the left
cuboid in Fig. 3 shows us word distributions of some finer
topics like “overshoot” at “LAX” in “Jan. 99”, while the right
cuboid shows us word distributions of some coarse topics
like “Deviation” at “LA” in “1999”. In Fig. 4, it shows two
example cells of a topic cube (with only word distribution
measure) constructed from ASRS. The meaning of the first
record is that the top words of aircraft equipment problem
occurred in flights during January 1999 are (engine 0.104,
pressure 0.029, oil 0.023, checklist 0.022, hydraulic 0.020,
...). So when an expert gets the result from the topic cube, she
will soon know what are the main problems of equipments
during January 1999, which shows the power of a topic cube.

Time Anomaly Event Word Distribution

1999.01 equipment
engine 0.104, pressure 0.029, oil 0.023, 

checklist 0.022, hydraulic 0.020, ...

1999.01
ground

encounters

tug 0.059, park 0.031, pushback 0.031, ramp 

0.029, brake 0.027, taxi 0.026, tow 0.023, ...

Figure 4: Example Cells in a Topic Cube

Query A topic cube supports the following query:
(a1, a2, . . . , am, t). Here, ai represents the value of the i-th
dimension and t represents the value of the topic dimension.
Both ai and t could be a specific value, a character “?”, or
a character “*”. For example, in Fig. 3, a query (“LAX”,
“Jan. 99”, t=“turbulence”) will return the word distribution
of topic “turbulence” at “LAX” in “Jan. 99”, while a query
(“LAX”, “Jan. 99”, t=“?”) will return the word distribution
of all the topics at “LAX” in “Jan. 99”. If t is specified as a
“*”, e.g. (“LAX”, “Jan. 99”, t=“*”), a topic cube will only
return all the documents belong to (Location=“LAX”) and
(Time=“Jan. 99”).

Operations A topic cube not only allows users to carry
out traditional OLAP operations on the standard dimensions,



but also allows users to do the same kinds of operations on
the topic dimension. The roll-up and drill-down operations
along the topic dimension will allow users to view the data
in different levels (granularities) of topics in the hierarchical
topic tree. Roll-up corresponds to change the view from a
lower level to a higher level in the tree, and drill-down is the
opposite. For example, in Fig. 3, an operation:

Roll-up on Anomaly Event (from Level 2 to Level 1)

will change the view of topic cube from finer topics like “tur-
bulence” and “overshoot” to coarser topics like “Encounter”
and “Deviation”. The operation:

Drill-down on Anomaly Event (from Level 1 to Level 2)

just does the opposite change.

4 Construction of Topic Cube
To construct a topic cube, we first construct a general data
cube (we call it GDC from now on) based on the standard
dimensions in the multidimensional text database D. In each
cell of this cube, it stores a set of documents aggregated
from the text dimension. Then, from the set of documents
in each cell, we mine word distributions of topics defined in
the hierarchical topic tree level by level. Next, we split each
cell into K =

∑m
i=1 ki cells. Here, ki is the number of topics

in level i. Each of these new cells corresponds to one topic
and stores its word distribution (primary measure) and the
topic coverage probabilities (auxiliary measure). At last, a
topic dimension is added to the data cube which allows users
to view the data by selecting topics.

For example, to obtain a topic cube shown in Fig. 3, we
first construct a data cube which has only two dimensions
“Time” and “Location”. Each cell in this data cube stores a
set of documents. For example, in cell (“LAX”, “Jan. 99”),
it stores the documents belonging to all the records in the
database which “Location” field is “LAX” and “Time” field
is “Jan. 99”. Then, for the second level of the hierarchical
topic tree in Fig. 1, we mine topics, such as “turbulence”,
“bird”, “overshoot”, and “undershoot”, from the document
set. For the first level of the hierarchical topic tree, we mine
topics such as “Encounter” and “Deviation” from the doc-
ument set. Next, we split the original cell, say (“LAX”,
“Jan. 99”), into K cells, e.g. (“LAX”, “Jan. 99”, “turbu-
lence”), (“LAX”, “Jan. 99”, “Deviation”) and etc. Here, K
is the total number of topics defined in the hierarchical topic
tree. At last, we add a topic dimension to the original data
cube, and a topic cube is constructed.

Since a major component in our algorithm for construct-
ing topic cube is the estimation of the PLSA model, we first
give a brief introduction to this model before discussing the
exact algorithm for constructing topic cube in detail.

4.1 Probabilistic Latent Semantic Analysis (PLSA)
Probabilistic topic models are generative models of text
with latent variables representing topics (more precisely

subtopics) buried in text. When using a topic model for text
mining, we generally would fit a model to the text data to
be analyzed and estimate all the parameters. These param-
eters would usually include a set of word distributions cor-
responding to latent topics, thus allowing us to discover and
characterize hidden topics in text.

Most topic models proposed so far are based on two rep-
resentative basic models: probabilistic latent semantic anal-
ysis (PLSA) [18] and latent Dirichlet allocation (LDA) [8].
While in principle both PLSA and LDA can be incorporated
into OLAP with our ideas, we have chosen PLSA because its
estimation can be done much more efficiently than for LDA.
Below we give a brief introduction to PLSA.

Basic PLSA The basic PLSA [18] is a finite mixture model
with k multinomial component models. Each word in a
document is assumed to be a sample from this mixture
model. Formally, suppose we use θi to denote a multinomial
distribution capturing the i-th topic, and p(w|θi) is the
probability of word w given by θi. Let Θ = {θ1, θ2, . . . , θk}
be the set of all k topics. The log likelihood of a collection
of text C is:

(4.1) L(C|Λ) ∝
∑

d∈C

∑

w∈V

c(w, d) log
k∑

j=1

p(θj |d)p(w|θj)

where V is the vocabulary set of all words, c(w, d) is the
count of word w in document d, and Λ is the parameter set
composed of {p(θj |d), p(w|θj)}d,w,j .

Given a collection, we may estimate PLSA using the
maximum likelihood (ML) estimator by choosing the pa-
rameters to maximize the likelihood function above. The
ML estimator can be computed using the Expectation-
Maximization (EM) algorithm [14]. The EM algorithm is a
hill-climbing algorithm, and guaranteed to find a local maxi-
mum of the likelihood function. It finds this solution through
iteratively improving an initial guess of parameter values us-
ing the following updating formulas (alternating between the
E-step and M-step):

E-step:

(4.2) p(zd,w = j) =
p(n)(θj |d)p(n)(w|θj)∑k

j′=1 p(n)(θj′ |d)p(n)(w|θj′)

M-step:

(4.3) p(n+1)(θj |d) =
∑

w c(w, d)p(zd,w = j)∑
j′

∑
w c(w, d)p(zd,w = j′)

(4.4) p(n+1)(w|θj) =
∑

d c(w, d)p(zd,w = j)∑
w′

∑
d c(w′, d)p(zd,w′ = j)

In the E-step, we compute the probability of a hidden
variable zd,w, indicating which topic has been used to gen-
erate word w in d, which is calculated based on the current



generation of parameter values. In the M-step, we would use
the information obtained from the E-step to re-estimate (i.e.,
update) our parameters. It can be shown that the M-step al-
ways increases the likelihood function value, meaning that
the next generation of parameter values would be better than
the current one [14].

This updating process continues until the likelihood
function converges to a local maximum point which gives
us the ML estimate of the model parameters. Since the EM
algorithm can only find a local maximum, its result is clearly
affected by the choice of the initial values of parameters that
it starts with. If the starting point of parameter values is al-
ready close to the maximum point, the algorithm would con-
verge quickly. As we will discuss in detail later, we will
leverage this property to speed up the process of materializ-
ing topic cube. Naturally, when a model has multiple local
maxima (as in the case of PLSA), we generally need to run
the algorithm multiple times, each time with a different start-
ing point, and finally use the one with the highest likelihood.

PLSA Aligned to a Specified Topic Hierarchy Directly
applying PLSA model on a data set, we can extract k word
distributions {p(w|θi)}i=1,...,k, characterizing k topics. In-
tuitively these distributions capture word co-occurrences in
the data, but the co-occurrence patterns captured do not nec-
essarily correspond to the topics in our hierarchical topic
tree. A key idea in our application of PLSA to construct
topic cube is to align the discovered topics with the topics
specified in the tree through defining a prior with the topic
tree and using Bayesian estimation instead of the maximum
likelihood estimator which solely listens to the data.

Specifically, we could define a conjugate Dirichlet prior
and use the MAP (Maximum A Posteriori) estimator to esti-
mate the parameters [30]. We would first define a prior word
distribution p′(w|θj) based on the keyword description of the
corresponding topic in the tree; for example, we may define
it based on the relative frequency of each keyword in the de-
scription. We assume that it is quite easy for an analyst to
give at least a few keywords to describe each topic. We then
define a Dirichlet prior based on this distribution to essen-
tially “force” θj to assign a reasonably high probability to
words that have high probability according to our prior, i.e.,
the keywords used by the analyst to specify this topic would
all tend to high probabilities according to θj , which further
bias the distribution to attract other words co-occurring with
them, achieving the purpose of extracting the content about
this topic from text.

4.2 Materialization As described in Section 4, to fully
materialize a topic cube, we need to mine topics for each
cell in the original data cube. As discussed earlier, we use
the PLSA model as our topic modeling method. Suppose
there are d standard dimensions in the text database D, each
dimension has Li levels (i = 1, . . . , d), and each level has
n

(l)
i values (i = 1, . . . , d; l = 1, . . . , Li). Then, we have

totally (
∑L1

l=1 n
(l)
1 ) × · · · × (

∑Ld

l=1 n
(l)
d ) cells need to mine

if we want to fully materialize a topic cube. One baseline
strategy of materialization is an exhaustive method which
computes the topics cell by cell. However, this method is
not efficient for the following reasons:

1. For each cell in GDC, the PLSA model uses EM algo-
rithm to calculate the parameters of topic models. This
is an iterative method, and it always needs hundreds of
iterations before converge.

2. For each cell in GDC, the PLSA model has the local
maximum problem. To avoid this problem and find the
global maximization, it always starts from a number of
different random points and selects the best one.

3. The number of cells in GDC could be huge.

On the other hand, based on the difficulty of aggregation,
measures in a data cube can be classified into three cate-
gories: distributive, algebraic, and holistic [12]. As the mea-
sure in a topic cube is the word distributions of topics got
from PLSA, we can easily see that it is a holistic measure.
Therefore, there is no simple solution for us to aggregate
measures from sub cells to super cells in a topic.

To overcome this problem, we propose to use a heuristic
method to materialize a topic cube more efficiently, which is
described below.

A Heuristic Materialization Algorithm The basic idea of
our heuristic algorithm is: when the heuristic method mines
topics from documents of one cell in GDC, it computes the
topics by first aggregating the word distributions of topics in
its sub cells as a starting point and then using EM algorithm
from this starting point to get the local maximum result. In
this way, the EM algorithm converges very quickly, and we
do not need to restart the EM algorithm in several different
random points. The outline of the heuristic method is shown
in Table 2.

Basically, in the first step of our algorithm, we construct
a general data cube GDC based on the standard dimen-
sions. Then in step 2, for each cell in the base cuboid, we
use exhaustive method (starting EM algorithm from several
random points and selecting the best local maximization) to
mine topics from its associated document set level by level.
The reason of using exhaustive method for base cells is to
provide a solid foundation for future aggregation when we
materialize higher level cuboids. In step 3 and step 4, we use
our heuristic aggregation method to mine topics from cells in
higher level cuboid. For example, when mining topics from
cell (a, b) in GDC, we aggregate all the same level topics
from its sub cells (a, b, cj)∀cj in the base cuboid.

Specifically, suppose ca is a cell in GDC and is aggre-
gated from a set of sub cells {c1, . . . , cm}, so that Sca =⋃m

i=1 Sci , where Sc is the document set associated with the
cell Sc. For each level Li in the hierarchical topic tree, we
have got word distribution {pci(w|θ(Li)

1 ), . . . , pci(w|θ(Li)
ki

)}



Table 2: Outline of a heuristic method for materialization
Suppose a topic cube has three standard dimensions A, B, C
and a topic dimension T . The hierarchical topic tree H has n
levels and each level Li has ki topics.
Step 1.
Build a general data cube GDC based on the standard dimen-
sions, and each cell stores the corresponding document set.
Step 2.
· For each cell (a, b, c) in the base cuboid and a document set
Sabc associated with it
· For each level Li in H , where i is from 1 to n− 1
· Estimate PLSA to mine ki topics from the document set

Sabc using the exhaustive method
Step 3.
· For each cell (a, b) in cuboid AB and a document set Sab

associated with it
· For each level Li in H , where i is from 1 to n− 1
· Estimate PLSA to mine ki topics from Sab by aggregat-

ing the same level of topics in all sub cells (a, b, cj) of (a, b) in
base cuboid
· Do similar aggregation in cuboid BC and CA
Step 4.
· Calculate topics for cells in cuboid A,B,C by aggregating
from cuboid AB,BC,CA

for each sub cell ci, and we are going to mine topics
{θ(Li)

1 , θ
(Li)
2 , . . . , θ

(Li)
ki

} from Sca . The basic idea of the
heuristic method is when we apply EM algorithm for mining
topics from Sca , we start from a good starting point, which is
aggregated from word distributions of topics in its sub cells.
The benefit of a good starting point is that it can save the time
for EM algorithm to converge and also save it from starting
with several different random points.

The aggregation formulas are as follows:

p(0)
ca

(w|θ(Li)
j ) =

∑
ci

∑
d∈Sci

c(w, d)p(zd,w = j)
∑

w′
∑

ci

∑
d∈Sci

c(w′, d)p(zd,w′ = j)

(4.5) p(0)
ca

(θ(Li)
j |d) = pci(θ

(Li)
j |d), if d ∈ Sci

Intuitively, we simply pool together the expected counts
of a word from each sub cell to get an overall count of the
word for a topic distribution. An initial distribution estimated
in this way can be expected to be closer to the optimal
distribution than a randomly picked initial distribution.

4.3 Saving Storage Cost One critical issue about topic
cube is its storage. As discussed in Section 4.2, for a
topic cube with d standard dimensions, we have totally
(
∑L1

l=1 n
(l)
1 )×· · ·×(

∑Ld

l=1 n
(l)
d ) cells in GDC. If there are N

topic nodes in the hierarchical topic tree and the vocabulary
size is V , then we need at least store (

∑L1
l=1 n

(l)
1 ) × · · · ×

(
∑Ld

l=1 n
(l)
d ) × N × V values for the word distribution

measure. This is a huge storage cost because both the

number of cells and the size of the vocabulary are large in
most cases.

There are three possible strategies to solve the storage
problem. One is to reduce the storage by only storing the top
k words for each topic. This method is reasonable, because
in a word distribution of one topic, the top words always have
the most information of a topic and can be used to represent
the meaning of the topic. Although the cost of this method
is the loss of information for topics, this strategy really saves
the disk space a lot. For example, generally we always have
ten thousands of words in our vocabulary. If we only store
the top 10 words of each topic in the topic cube instead of
storing all the words, then it will save thousands of times in
disk space. The efficiency of this method is studied in our
experiment part.

Another possible strategy is to use a general term to
replace a set of words or phrases so that the size of the
vocabulary will be compressed. For example, when we
talks about an engine problem, words or phrases like “high
temperature, noise, left engine, right engine” always appear.
So it motivates us to use a general term “engine-problem”
to replace all those correlated words or phrases. Such a
replacement is meaningful especially when an expert only
cares about general causes of an aviation anomaly instead
of the details. But the disadvantage of this method is that
it loses much detailed information, so there is a trade off
between the storage and the precision of the information we
need.

The third possible strategy is that instead of storing
topics in all the levels in the hierarchical topic tree, we can
only store the topics in the odd levels or the topics in the
even levels. The intuition is: suppose one topic’s parent
topic node has a word w at the top of its word distribution
and at the same time its child topic node also has the same
word w at the top of its word distribution, then it is highly
probably that this topic also has word w at the top of its word
distribution. In other words, for a specific topic, we can use
the word distribution in both its parent topic and child topic
to quickly induce its own word distribution. This is also an
interesting direction to explore.

5 Experiments
In this section, we present our evaluation of the topic cube
model. First, we compare the computation efficiency of our
heuristic method with a baseline method which materializes
a topic cube exhaustively cell by cell. Next, we are going to
show three usages of topic cube to demonstrate its power.

5.1 Data Set The data set we used in our experiment is
downloaded from the ASRS database [2]. Three fields of
the database are used as our standard dimensions, namely
Time {1998, 1999}, Location {CA, TX, FL}, and Environ-
ment {Night, Daylight}. We use A, B, C to represent them
respectively. Therefore, in the first step the constructed gen-
eral data cube GDC has 12 cells in the base cuboid ABC, 16



cells in cuboids {AB, BC, CA}, and 7 cells in cuboids {A, B,
C}. The summarization of the number of documents in each
base cell is shown in Table 3.

Table 3: The Number of Documents in Each Base Cell
CA TX FL

1998 Daylight 456 306 266
1998 Night 107 64 62
1999 Daylight 493 367 321
1999 Night 136 87 68

Three levels of hierarchical topic tree is used in our
experiment, 6 topics in the first level and 16 topics in the
second level, which is shown in Fig. 5. In real applications,
the prior knowledge of each topic can be given by domain
experts. For our experiments, we first collect a large number
of aviation safety report data (also from ASRS database),
and then manually check documents related to each anomaly
event, and select top k (k < 10) most representative words
of each topic as its prior.
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Figure 5: Hierarchical Topic Tree used in the Experiments

5.2 Efficiency Comparison We totally compare three
strategies of constructing a topic cube. (1) Heuristic aggre-
gation method we proposed in Section 4.2, and we use Agg
to represent it. (2) An approximation method which only
stores top k words in the word distribution of each topic, and
we use App to represent it. The purpose of this method is
to test the storage-saving strategy proposed in Section 4.3.
When calculating topics from a document set in one cell, we
use the same formula as in Agg to combine the word dis-
tributions of topics, with only top k words, in its sub cells
and get a good starting point. Then, we initialize the EM
algorithm with this starting point and continue it until con-
vergence. In our experiment, we set the constant k equal
to 10. (3) The third strategy is the baseline of our method,
which initializes the EM algorithm with random points, and
we use Rdm to represent it. As stated before, the exhaustive
method to materialize a topic cube runs EM algorithm by
starting from several different random points and then select
the best local maximum point. Obviously, if the exhaustive
method runs EM algorithm M times, its time cost will be M
times of the Agg method. The reason is every run of EM al-
gorithm in Rdm has the same computation complexity as the
Agg method. Therefore, it’s no doubt that the heuristic ag-

gregation method is faster than the exhaustive method. So,
in our experiment, we use the average performance and best
run of the random method to compare the efficiency with
the Agg method. The average performance is calculated by
running the EM algorithm from M random points and then
averaging the performance of these runs. The best run is the
one which converges to the best local optimum point (highest
log likelihood) among these M runs.

To measure the efficiency of these strategies, we look
at how long it takes for these strategies to get to the same
closeness to the global optimum point. Here, we assume that
the convergence point of the best run of the M runs is the
global optimum point. The experimental results are shown
in Fig. 6. The three graphs show the efficiency comparison
of the three strategies. Each graph represents the result in
one level of cuboid, and we use one representative cell to
show the comparison. The experiment on other cells have
similar performance and can lead to the same conclusion.

In the graph, Best Rdm represents the best run among
those M random runs in the third strategy, and Avg Rdm
represents the average performance of the M runs. The
abscissa axis represents how close one point is to the global
optimum point. For example, the value “0.24” on the axis
means one point’s log likelihood is 0.24% smaller than the
log likelihood of the global optimum point. The vertical axis
is the time measured in seconds. So a point in the plane
means how much time a method needs to get to a certain
closeness to the global optimum point. We can conclude
that in all three cells, the proposed heuristic methods perform
more efficiently than the baseline method, and this advantage
of the heuristic aggregation is not affected by the scale of
the document set. An interesting discovery is that the App
method performs stabler than Agg. For example, in Fig. 6 (b)
and (c), although the Agg method starts from a better point
than App, after reaching a certain point, the Agg method
seems to be “trapped” and needs longer time than App to get
further close to the optimum point. Therefore, in Fig. 6 (d),
we also test the scalability of the three strategies. The graph
depicts how much time one method needs to get to as close
as 99.99% of the global maximum value. We can see that
the performance of App is stabler than the Agg method. This
indicates that, when the size of the document set becomes
larger, App method is preferred.

Table 4 shows the log likelihood of the starting points of
the three strategies. Here, the log likelihood of the objective
function is calculated by Eq. (4.1). This value indicates
how likely the documents are generated by topic models,
so it is the larger the better. In all the cells, both Agg and
App strategies have higher value than the average value of
the Rdm strategy. This also assists our conclusion that the
proposed heuristic methods are much easier to get to the
optimum point than starting from a random point, thus need
less time to converge.

5.3 Topic Comparison in Different Context One major
application of a topic cube is to allow users explore and an-
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Figure 6: Efficiency Comparison of Different Strategies

Table 4: Starting Point of each Strategy
Strategy (1999, CA, *) (1999, *, *) (*, *, *)

Agg -501098 -1079750 -2081270
App -517922 -1102810 -2117920

Avg Rdm -528778 -1125987 -2165459

alyze topics in different contexts. Here, we regard all the
standard dimensions as contexts for topics. Fig. 7 shows four
cells in the topic cube constructed on our experiment data.
The column of “Environment” can be viewed as the con-
text of the topic dimension “Anomaly Event”. Comparing
the same topic in different contexts will discover some inter-
esting knowledge. For example, from the figure we can see
that the “landing without clearance” anomaly event has more
emphasis on the words “light”, “ils”(instrument landing sys-
tem), and “beacon” in the context of “night” than in the con-
text of “daylight”. This tells experts of safety issues that
these factors are most important for landing and are men-
tioned a lot by pilots. On the other hand, the anomaly event
“altitude deviation: overshoot” is not affected too much by
the environment light, because the word distribution in these
two contexts are quite similar.

Environment Anomaly Event Word Distribution

daylight
landing without 

clearance

tower 0.075, pattern 0.061, final 0.060, 

runway 0.052, land 0.051, downwind 0.039

night
landing without 

clearance

tower 0.035, runway 0.027, light 0.026, lit 

0.014, ils 0.014, beacon 0.013

daylight
altitude deviation:

overshoot

altitude 0.116, level 0.029, 10000 0.028, f 

0.028, o 0.024, altimeter 0.023

night
altitude deviation:

overshoot

altitude  0.073, set  0.029, altimeter  0.022, 

level  0.022, 11000  0.018, climb  0.015

Figure 7: Application of Topic Cube in ASRS

5.4 Topic Coverage in Different Context Topic coverage
analysis is another function of a topic cube. As described
above, one family of parameters in PLSA, {p(θ|d)}, is stored
as an auxiliary measure in a topic cube. The meaning of
these parameters is the topic coverage over each document.
With this family of parameters, we can analyze the topic cov-

erage in different context. For example, given a context (Lo-
cation=“LA”, Time=“1999”), we can calculate the coverage
or proportion of one topic t by the average of p(t|di) over all
the document di in the corresponding cell in GDC. From
another point of view, the coverage of one topic also reflects
the severity of this anomaly event.

Fig. 8 shows the topic coverage analysis on our experi-
ment data set. Fig. 8(a) is the topic coverage over different
places and Fig. 8(b) is the topic coverage over different en-
vironment. With this kind of analysis, we can easily find
out answers to the questions like: what is the most sever
anomaly among all the flights in California state? What kind
of anomaly is more likely to happen during night rather than
daylight? For example, Fig. 8 helps us reveal some very
interesting facts. Flights in Texas have more “turbulence”
problems than in California and Florida, while Florida has
the most sever “Encounter: Airborne” problem among these
three places. And there is no evident difference of the cov-
erage of anomalies like “Improper documentation” between
night and daylight. This indicates that these kinds of anoma-
lies are not correlated with environment factors very much.
On the other hand, anomaly “Landing without clearance” ob-
viously has a strong correlation with the environment.

5.5 Accuracy of Categorization In this experiment, we
test how accurate the topic modeling method is for document
categorization. Since we only have our prior for each topic
without training examples in our data set, we do not compare
our method with supervised classification. Instead, we use
the following method as our baseline. First, we use the prior
of each topic to create a language model ζj for each topic j.
Then, we create a document language model ζd for each doc-
ument after Dirichlet smoothing: p(w|ζd) = c(w,d)+µp(w|C)

|d|+µ ,
where c(w, d) is the count of word w in document d and
p(w|C) = c(w, C)/|V | is the collection background model.
Finally, we can use the negative KL-divergence [21] function
to measure the similarity between a document d and a topic
j: S = −D(ζj ||ζd) =

∑
w p(w|ζj) log p(w|ζd)

p(w|ζj)
. If one docu-

ment d has a similarity score S higher than a threshold δ with
a topic j, then it is classified into that topic. One the other
hand, when we use the word distribution measure in a topic
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Figure 8: Topic Coverage Comparison among Different Contexts

cube for categorization, we use the word distribution θj of
topic j as its language model, and then compute the negative
KL-divergence between θj and ζd to compute the similarity
score of each topic j and document d.

Our experiment is conducted on the whole data set,
and use the first level of topics in Fig. 5 as the target
categories, i.e. we classify the documents into 6 categories.
The gold answer we use is the “Anomaly Event” labels in
ASRS data, which is tagged by pilots. Then we get the
following recall-precision curves by changing the value of
the threshold δ. We can see that the curve of PLSA is above
the baseline method. This means that PLSA would get better
categorization result if we only have prior knowledge about
topics.
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Figure 9: Comparison of Categorization Accuracy

6 Conclusions
OLAP is a powerful technique for mining structured data,
while probabilistic topic models are among the most effec-
tive techniques for mining topics in text and analyzing their
patterns. In this paper, we proposed a new data model (i.e.,
TopicCube) to combine OLAP and topic models so that we
can extend OLAP to the text dimension which allows an an-
alyst to flexibly explore the content in text documents to-
gether with other standard dimensions in a multidimensional
text database. Technically, we extended the standard data

cube in two ways: (1) adopt a hierarchical topic tree to de-
fine a topic dimension for exploring text information, and (2)
store word distributions as the primary content measure (and
topic coverage probabilities as auxiliary measure) of text in-
formation. All these probabilities can be computed simul-
taneously through estimating a probabilistic latent semantic
analysis model based on the text data in a cell. To efficiently
materialize topic cube, we propose a heuristic algorithm to
leverage previously estimated models in component cells to
choose a good starting point for estimating the model for a
merged large cell. Experiment results show that this heuristic
algorithm is effective and topic cube can be used for many
different applications.

Our work just represents the first step in combining
OLAP with text mining based on topic models, and there are
many interesting directions for further study. First, it would
be interesting to further explore other possible strategies
to materialize a topic cube efficiently. Second, since the
topic cube gives us an intermediate result of text analysis in
cells, it is important to explore how to summarize documents
according to the context of each cell based on the result
of topic cube. Finally, our work only represents one way
to combine OLAP and topic models. It should be very
interesting to explore other ways to integrate these two kinds
of effective, yet quite different mining techniques.
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